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Abstract. Direct laser deposition (DLD) allows creating parts of complex shapes and 
configurations in a single process step without using of additional equipment. Such technologies are 
required in the shipbuilding industry, aircrafts, gas turbines, mechanical engineering etc., where it is 
necessary to manufacture large-sized and complex products that have a long technological cycle for 
production using classical technologies. DLD makes it possible to produce parts of various alloys 
with mechanical characteristics at the level of the wrought alloys. The publication is described 
direct laser deposition of high-strength cold-resistant steels results. Besides mechanical properties 
of material, the exploitation properties of the structure are also significantly important. Results of 
corrosion, abrasive-corrosion and tribotechnical tests are shown. 

Introduction 
Cold-resistant steels are widely used in the Arctic and northern regions for shipbuilding and 

different marine structures. The main characteristic of using cold-resistant steels is the high 
resistance to brittle fracture at low temperatures and high corrosion resistance in the seawater. Laser 
and hybrid laser-arc technologies already have a good results applied for welding of high-strength 
and cold-resistant steels [1 – 4]. 

Nowadays, many industries try to introduce the modern technology of part’s manufacturing 
which is based on adding material – additive technologies. The most useful energy source for 
additive manufacturing is laser irradiation. Additive technologies based on selective laser sintering 
and selective laser melting (SLS- and SLM technology) [5 - 7] almost ready for practical 
application. However, SLS and SLM technologies are characterized low productivity and small size 
of manufacturing parts, which are caused by technological aspects of the process.  

The additive technology, which is able to solve these issues, is direct laser deposition (DLD) – 
the method based on supplying of filler material by compressed gas-powder jet directly into the 
laser action zone [8]. DLD makes it possible to produce parts of various alloys with mechanical 
characteristics at the level of the wrought alloys [9 – 16]. High productivity, automation and 
reduction in total processing time are required in adaptive and flexible manufacturing [17, 18]. 

DLD process allows creating parts of complex shapes and configurations in a single process step 
without using of additional equipment. Such technologies are required in the shipbuilding industry, 
aircrafts, gas turbines, mechanical engineering etc., where it is necessary to manufacture large-sized 
and complex products that have a long technological cycle for production using classical 
technologies [8, 19, 20]. The technology has been reducing the consumption of raw materials and 
the amount of waste. The materials utilization rate for this technology is 70%, there is also the 
possibility of using secondary and tertiary powder. 

Besides mechanical properties of material, the exploitation properties of the structure are also 
significantly important. This article shows the corrosion, abrasive-corrosion, wear resistance of 
material manufactured via DLD. 
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Experimental Procedure 
Experimental Equipment. DLD of the high-strength cold-resistant steel was realized on the 

laser technological machine for cladding and additive manufacturing (Fig. 1). 
Laser technological machine based on industrial robot LRM-200iD_7L, Fanuc; laser irradiation 

source LS 5, IPG Photonics; laser head FLW D30, IPG Photonics with removable cladding nozzle 
COAX9, Fraunhofer IWS; powder feeder Sulzer Metco Twin 10C with track transection of 
metering disk of 16×1.2 mm2. 

 
Figure 1. Laser technological machine for cladding and additive manufacturing. 

 
Using Materials. Steel powder 09CrNi2MoCu fracture of 45-160 µm was used as the feeding 

material for DLD process. The powder was obtained by gas atomization process. Chemical 
composition is shown in the Table 1. 

Table 1. Chemical compositions (wt%) of the feeding powder 09CrNi2MoCu. 
Fe C Cr Ni Mo Cu Si Mn 
Bal. 0.0074 0.64 2.0 0.4 0.6 0.04 0.28 
Al V N O Ca P S - 
0.01 0.01 0.008 0.1 0.01 0.02 0.01 - 

At the first stage of the study, the technological parameters were determined for as received 
condition of the powder to ensure the continuity and stability of depositing material. At the second 
stage, the technological parameters were fixed and condition of the filler powder (as received, 45-
160 µm, used, 45-160 µm, mixture of used & unused, 45-160 µm) were varied.  

Methods of Inspection. All deposited samples were inspected visually by means of optical and 
scanning electron microscopy. Corrosion and abrasive corrosion rate were measured by mass loss. 
The specimens were immersed in a 5% NaCl solution during 240 hours for corrosion testing and in 
circulating water with the addition of 0.5% silica sand of the 0.4 - 0.8 mm fraction for 1, 3, 5 hours 
for abrasive corrosion testing. Rectangular slabs triplicate specimens with the size about 55×40×10 
mm were tested. Before the measurements, the samples were grinded with 120 grit paper. Then the 
samples were prepared with the standard method described in ASTM G1-03. The tests were run at 
ambient temperature. 

Corrosion and abrasive-corrosion rate were determined as 
 

V=∆m×T/ρ×S×t, (1) 
 
where ∆m is mass loss, T is hours per year, ρ is density, S is the initial area, t is duration of test. 
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Abrasive corrosion tests were carried using the test vessel equipped with solution supplying 
system. The speed of flow with solution with sand is 5 meters per second. The direction of flow is 
perpendicular to a sample. 

The tribotechnical test were conducted via spinning friction method using a face friction machine 
PBD-40 in accordance with the schematic given in figure 2. The rotating counterbody was a 
cylindrical sample (roller) of ShKh-15 bearing steel with a diameter of 10 mm. During the tests, the 
rotating counterbody was pressed by its flat side to the plane of the clamped specimen. The clamp, 
fixed on a bearing knot using a cable and a strain gage within the experiment, was kept from 
rotation transmitted by the movable roller. In all measurements, the load per friction pair was 85 N, 
and the rotation frequency of the shaft clamping the steel roller was 200 rpm. Measurements of the 
trace diameter’s changing were carried out with an interval of 1 minute; the total duration of the test 
for each sample was 5 minutes. Rectangular slabs triplicate specimens with the size about 
10×10×10 mm were tested. Before the measurements, the samples were grinded with 120 grit 
paper. 

  
a b 

  
c d 

Figure 2. Spinning friction method: a) testing scheme, b) testing set up, c) rotating counterbody, 
d) trace measuring. 

Linear wear was calculated as 
 

Н =  (𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1) ∗ 𝑘𝑘𝑡𝑡, (2) 
 
where Н is linear wear, mm; 𝑑𝑑𝑛𝑛 is actual diameter of trace, mm; 𝑑𝑑𝑛𝑛−1 is previous diameter of trace, 
mm; 𝑘𝑘𝑡𝑡 – transition coefficient from trace diameter to linear wear, which depends on counterbody 
cone angle α (α=86°, 𝑘𝑘п= 0,536). 
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Experimental Results 
Corrosion wear. The mass losses of the specimens with different powder condition in 5% NaCl 

solution and in circulating water with the addition of 0.5% silica sand are reported in Table 2.  
Table 2. Test results. 

Powder condition 
Corrosion test 
Corrosion rate, 
mm/year 

Average, 
mm/year 

As-received 
0.0519 

0.0481 0.0517 
0.0407 

Used 
0.0574 

0.0538 0.0522 
0.0519 

Mixture of as-received 
and used 

0.0431 
0.0431 0.0414 

0.0454 

It was found that there is no difference in corrosion rate between the specimens with different 
types of powder the average corrosion rate for all samples is about 0,04-0,05 mm/year. According 
to operational documents for the part, which is supposed to be manufactured by the DLD method, 
the permissible level of corrosive wear for 10 years is 0.6 mm. In the case of our results, corrosive 
wear for 10 years is 0.43 – 0.54 mm. A clear dependency of the initial powder condition effect on 
corrosive wear is not found. The surface of samples after testing is shown in figure 3. 

 
Figure 3. The surface of tested samples. 

Abrasive corrosion wear. In result of comparison of the surface of the samples after corrosion-
abrasive tests, it can be seen that samples deposited from powders of different initial condition 
behave in a similar way (figure 4). 
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a b 

  
c d 

Figure 4. The surface of samples: a) before testing, b) after 1 hour of testing, c) after 3 hours 
of testing, d) after 5 hours of testing. 

After 1 hour of testing, a spot of wear appears on the surface of the samples, corresponding to 
the diameter of the nozzle (figure 4b). After 3 hours of testing, wear spot becomes more perceptible 
(figure 4c). Finally, after 5 hours of testing, the wear spot is clearly visible, and metal becomes less 
shiny, which indicates a significant degree of wear (figure 4d). The results of testing are reported in 
figure 5. 

Key Engineering Materials Vol. 822 377



 
Figure 5. Corrosion-abrasive wear rate during the test. 

Abrasive corrosion rate was revealed to be decreasing with the time of exposure (figure 5). 
Abrasive corrosion rate has the lowest value for the sample made with as received powder. During 
the increasing of used powder concentration in the filling material, the wear of surface goes higher. 
Nevertheless, with enlarging test duration up to 5 hours, the results tend to a single value. It can be 
assumed, that during long-term exploitation of the structure, the influence of the filler powder 
quality parameters is not significant. 

Tribotechnical properties. It was found that there is no difference in spinning friction wear 
between the specimens with different types of powder. Measured diameters of traces for all samples 
are in range of 1.8358√𝑡𝑡 ≤ 𝐷𝐷 ≤ 1.9675√𝑡𝑡, where D is trace diameter, mm; t is time, min. The 
changes of trace diameters after friction testing are presented in figure 6. A clear dependency of the 
initial powder condition effect on spinning friction wear is not found. 

 
Figure 6. The change of trace diameter during the testing time. 

To transfer values of trace diameters to linear wear, the formula (2) was used. The results of 
calculated linear wear are shown in figure 7. The linear wear is in range of 0.2439𝑡𝑡 ≤ 𝐻𝐻 ≤ 0.327𝑡𝑡. 
These results corresponds with steel materials this type of strength and wear resistance. 
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Figure 7. Linear wear of deposited samples. 

Conclusions 
Increasing of used powder concentration raises the corrosion-abrasive wear of the samples. 

However, prolongation of exposure time, the abrasive wear for samples deposited from different 
powder conditions becomes almost the same. 

Corrosion and spinning friction wear resistance for all samples deposited from different powder 
conditions corresponds with the materials obtained by conventional technologies of drowning and 
casting. 
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1. Introduction 
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1. Introduction

Currently, the main task of the development of shipbuilding and engineering is to improve the quality and speed 
of production of complex parts using additive manufacturing. Direct laser deposition DLD (DMD direct metal 
deposition analogue) has the ability to produce products with complex shape from various materials [1, 2]. 
Manufacturing of parts by laser direct deposition (DLD) [3-5] is one of the promising areas of the 21st century, based 
on the layer-by-layer deposition of metal powder in the zone of laser exposure. Such technology can be applied to 
materials used in Arctic conditions. The main reason for using cold-resistant steels is the high resistance to brittle 
fracture at low temperatures [6].

In shipbuilding, cold-resistant steel is using for propeller brackets, stem, and other structures for work on the Arctic 
shelf. Parts and products can be manufactured in one technological step and are not inferior in quality to parts 
manufactured by traditional methods [7-11]. Unlike traditional technology, using a DLD, a bainitic microstructure can 
be achieved. The presence of a bainitic structure should provide higher viscous properties, reduce brittleness, which 
is very important for cold-resistant steels. At the same time, the DLD technology can allow to regulate the process of 
formation of bainitic structures and ensure the production of bainite with the required morphology [12–13].

High-strength steel with a bainite structure is one of the most used materials in shipbuilding, since its properties 
have a good balance of high strength and toughness. According to the literature, there is a huge amount of research 
devoted to the study of bainite formation, including kinetics, microstructural morphology, crystallography and related 
mechanical properties [14]. Nevertheless, many theoretical questions about this microstructure are still being 
discussed, although various types of bainitic steels have been introduced into various industries [15, 16].

The article presents the results of studies of structure formation in steel of bainite class, obtained using the DLD 
process. The effect of process parameters on the formation of bainite structures was studied. The possibility of using 
additive methods for manufacturing products with satisfactory mechanical characteristics is demonstrated.

2. Materials and research methodic

The study samples obtained by the DLD method are investigated. The equipment is a robotic complex based on an 
industrial robot LRM-200iD_7L, Fanuc; laser emission LS-5 IPG Photonics; FLW D30 IPG Photonics laser head with 
removable surfacing nozzle COAX9 Fraunhofer IWS; powder feeder SulzerMetco Twin 10C.
During the study, the following samples were obtained with variable irradiation power P = 1400 W, 2000 W, 2300 W
and constant deposition rate 32 mm/s, which determined by values of traverse speed, powder feeding rate, X increment 
after each bead and Z increment after each layer.

Samples for metallography and impact toughness were cut from a single slab with the following dimensions: 
(height = 65 mm; width = 48 mm; thickness = 11.2 mm). Samples for the study of the microstructure were made by 
cold casting into a conductive resin. To identify the microstructure, chemical etching was used in a 10% alcohol -
based H2NO3 solution, the etching time was 3–10 seconds (9 ml of alcohol C2H5OH + 1 ml HNO3). The structure was 
studied using a PhenomProX electron microscope and a LOMO Metam LV-31 optical microscope.
The pendulum impact tester RKP 450 was used to determine the toughness. The size of the pits and oxide inclusions 
in fractures was measured in Digimizer Image Analysis Software.

The starting material is a powder alloy F620W (09CrNi2MoCu) produced by SphereM (Figure 1) – shipbuilding, 
high-strength and cold-resistant steel, an economically alloyed. Chemical composition is presented in Table 1.

Table 1. Chemical composition of steel F620W.

Material C Si Mn Cr Ni Mo S P Al e Cu Са

F620W 0,08 -
0,11

0,17 -
0,37

0,30 -
0,60

0,30 -
0,70

1,80 -
2,20 0,35 0,01 0,015 0,01 -

0,05 All the rest 0,40 -
0,70 0,03
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a)

b)
Fig. 1. SphereM powder 45-160 μm, a) surface of powder particles; b) particle distribution histogram.

Table 2 presents the results of the study of the surface of the powder.

Table 2. Powder parameters.

Powder Average satellite size, 
(μm) Sphericity Number of satellites Flow rate of powder, (g/s)

Powder fraction 45-160 μm

«SphereM» 21,26 0,95 On 5 particles 2 satellite 3,72

3. Sample microstructure

With an increase in power from 1400 W to 2000 W and 2300 W, grain growth is observed, the structure in some 
areas represents the bainitic ferritic component Figure 2.

a) b) c)
Fig. 2. Microstructure formation at power, a) P = 1400 W, b) P = 2000 W, c) P = 2300 W.

Figure 3 shows the microstructures obtained with a radiation power of 2000 W, observed in different parts of the 
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deposition wall. Depending on the cooling rate, the transformed microstructures are complex and may contain upper 
bainite (UB), granular bainite (GB) with different morphology, and in some cases polygonal ferrite (PF) [16].

Granular bainite (GB) – grains of irregular shape, sometimes plates in which a dislocation structure is observed, 
packages of parallel plates characteristic of upper bainite are missing. This type of ferrite forms at lower cooling rates 
than acicular ferrite. Upper bainite (UB) of periodic type with a structure of parallel spaced strips or plates. The second 
structural component is along the boundaries of the ferritic plates of the M/A-phase (martensitic-austenitic mixture), 
carbides plates (if M/A is present, it is characterized as degenerate). The formation of a bainitic structure begins with 
the isolation of embryos of upper bainite along the boundaries of austenitic grains, which are almost completely 
preserved in the bainitic structure [17-19].

a) b)

c) d)
Fig. 3. Microstructure, a, b) optical microscope (bainite); c, d) electron microscope upper bainite (UB), granular bainite (GB).

4. Mechanical tests of the obtained samples

To study the toughness of material produced via DLD process, the specimens were obtained with deposition rate
was 32 mm/s and varied laser power from 1400 W to 2300 W from powder with different condition (as-received, 
used and its mixture), Table 3.
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Table 3. Modes DLD.

No. P, (W) Powder T, (0С) K, (J) KCV-40, (J/сm2)

Z/1.1

1400

As-received

-40

60,1 73,3
Z/1.3 Used 24,53 29,6

Z/1.4 As-received +
Used (50/50) 28,3 34,3

Z/1.6
2300

As-received 69,6 86,3

Z/1.7
Used

43,36 53,3

Z/1.8

2000

41,63 50,6

Z/1.10 As-received +
Used (50/50) 17,56 22

Z/1.12 As-received 67,96 84,66

Figure 4 shows the individual fracture surfaces of specimens obtained by the DLD method after the impact 
toughness. The presented fractographs of the samples indicate that the fractures are predominantly ductile fracture.
With a low laser emission in the process of deposition, a large number of defects in fractures appear in the samples, 
such as cracks and oxide inclusions.

a) b)

c) d)
Fig. 4. Fractographs of the obtained samples, a) Z/1.3 b) Z/1.7 c) Z/1.10 d) Z/1.12.

Equaxial pits form in fractures, ductile failure, finely dispersed oxides are present, a larger number and larger size 
of oxide inclusions are found in Table 4. The pits originated at the interface between the matrix and globular inclusions, 
which can be particles of sulfides and oxides in rare cases there are nitrides.
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Table 4. - Fracture analysis.

No. Average hole size (μm) Average oxide size (μm)

Z/1.3 2,49 1,1

Z/1.7 1,85 0,6

Z/1.10 1,43 0,49

Z/1.12 2,02 1,11

Fracture analysis showed in the sample Z/1.3 the average size of the pits is 2.49 μm, the average size of the oxides 
1.1 μm; in sample Z/1.7, the average size of the dimples is 1.85 μm, the average oxide size is 0.6 μm; in sample Z/1.10, 
the average size of the is 1.43 μm, the average oxide size is 0.49 μm; in sample Z/1.12, the average size of the is 2.02 
μm, the average size of the oxides is 1.11 μm.

5. Conclusions

The research results demonstrated the possibilities of direct laser deposition production from cold-resistant steels 
on the example of F620W. The main advantage of the technology is the ability to obtain the necessary structure by 
regulating the main technological parameters of the process.

The optimal modes of DLD process with high toughness and tensile strength and the microstructure of bainite 
without martensitic component have been developed. Despite the identified amount of contamination on the surface 
of the particles of the secondary powder, the mechanical properties of the samples were on a level with samples of the 
primary powder. This leads to save raw material and, therefore, to reduce the cost of the final product, which is an 
advantage of the of direct laser deposition process.

With an increase in power from 1400 W to 2000 W and 2300 W, grain growth is observed, the microstructure in 
some areas is bainitic-ferritic. With a power of 2000 W, the direct laser growth process is optimal and stable, as well 
as more economical due to the lower laser power; the microstructure is uniform in combination with high mechanical 
properties.Based on the results of the toughness, several samples with the best values can be noted, exactly: (P = 2300
W) Z/1.6 KCV = 86.3 J/cm2; (P = 2000 W) Z/1.12 KCV = 84.66 J/cm2. In this regard, it is advisable to use the mode 
at power P = 2000 W and deposition rate of 32 mm/s, which is economically justified and affects the final cost of the 
resulting product.
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Abstract. Effect of process parameters of microstructure formation and mechanical properties of 
direct laser deposited parts of cold-resistant steel 09CrNi2MoCu is studied. Due to local properties 
of buildup depends on thermal cycle during fabrication simulation of temperature field was carried 
out. The following cases were analysed: deposition of the first layer on massive substrate and 
deposition of a layer on the buildup far from the substrate. It was established that one time high 
temperature reheating of deposited layer has no effect on hardness while additional reheating up to 
lower temperature leads to considerable decrease in hardness by 87-100 HV. Far from substrate 
hardness and microstructure bands of 0.7-0.8 mm thickness have a hardness variation in the range 
of 250-300 HV. The area close to the substrate has a microstructure of upper bainite with higher 
hardness due to higher cooling rates during deposition. In the process of deposited, at a higher 
power, a quick process of heating and cooling occurs, and vice versa, which forms various products 
of bainite transformation. From the obtained modes were presented the results of tests for impact 
strength at low temperatures. 

Introduction 
Steel is widely used in shipbuilding, mechanical engineering, aircraft manufacturing and 

aerospace industry due to their universal properties. Direct laser deposition (DLD) makes it possible 
to obtain parts from various alloys with different wall thicknesses, surpassing the physic mechanical 
properties of parts made by traditional production technologies [1-7]. The fabrication of parts from 
cold-resistant steel is one of the newest areas of production of the 21st century, which are widely 
used in the Arctic and northern regions, strategically important areas of production. Details such as 
pipeline joint assemblies [8, 9], ships and offshore platforms [10], low-temperature high-strength 
steel materials that can withstand critical loads under extreme conditions [11]. High performance, 
automation and reduction of total processing time - these functions which are required in adaptive 
and flexible production environments can be achieved using the DLD method [12-16]. At this 
moment one of the major problems is to develop optimal process parameters for obtaining parts 
with high strength and homogeneous microstructure. It should be taking into account that fabricated 
parts will be used in Arctic conditions. Another problem is to determine relationship between 
thermal cycles during deposition and microstructure formation.  

The aim of the present work is to study effect of process parameters of microstructure formation 
and mechanical properties of direct laser deposited parts of cold-resistant steel 09CrNi2MoCu. 

Experimental Procedure 
The samples of steel 09CrNi2MoCu were obtained by DLD. Chemical composition and X-ray 

analysis of the powder is presented in Table 1. The direct laser deposition system consisted Fanuc 
robot equipped with a 3 kW fiber laser and coaxial powder nozzle. Process parameters was the 
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following: beam power 1.4-2.3 kW, forward speed 25 mm s-1, powder flow rate 35.8 g min-1. The 
average layer height and width resulted to 0.8 mm and 1.6 mm respectively. 

Microstructure study was carried out using samples etched in a 9 ml of alcohol C2H5OH + 1 ml 
of HNO3 solution during 3–10 seconds. 

Table 1  Chemical composition of steel 09CrNi2MoCu 

Material C Si Mn Cr Ni Mo S P Al Fe Cu Са 

Wrought 
09CrNi2MoCu 

0.08 - 
0.11 

0.17-
0.37 0.3-

0.6 
0.3-
0.7 

1.8-
2.2 0.35 0.01 0.015 

0.01-
0.05 

All the 
rest 

0.4-
0.7 0.03 

Powder (average 
value) - 0.55 0.8 0.55 2 - - - - - - 

 
Fig. 1 The surface of the powder particles 

Analysis of temperature field during deposition of multilayer wall 

In order to determine cooling rates in single pass multilayer wall simulation of temperature field 
was carried out. The following cases were analysed: deposition of the first layer on massive 
substrate and deposition of a layer on the buildup far from the substrate. Heat conduction problem 
was solved by Green’s function method. Thermophysical properties were temperature independent. 
Quasi-stationary solution for moving point heat source in semi-infinite body was used as a 
fundamental solution. Mirror method was used for obtaining solution for moving point heat source 
on the edge of the wall. Heat flux of laser beam was described as a normally distributed surface heat 
source. Calculated cooling curves for different beam power is shown in Fig. 2. It is seen that near 
substrate deposited layer have a high cooling rates i.e. cooling time in the range 800-500oC is small. 
It explained by the intensive heat sink in the massive substrate. It can be assumed that 
microstructure of buildup near the substrate will have quenched microstructure. Far from the 
substrate cooling time much longer due to less intensive heat sink. It should lead to formation of 
more favourable microstructure and properties. It also seen that cooling time may be increased by 
the increasing the ratio between beam power and deposition speed. 
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Fig. 2 Cooling curves for a layer deposited on the massive substrate and for a layer deposited on the 

wall far from substrate 

Mechanism of microstructure and properties formation 

During of fabrication of large-size parts buildup is considerably cooled down between deposition 
of layers due to dwell time. Preheating, depending on layer length and process parameters, have 
considerable effect on cooling rate. How was mentioned above high cooling rates leads to formation 
of unfavourable microstructure. The following experimental trials were carried out in order to 
simulate fabrication of large-size part: deposition of single pass wall with cooling buildup down to 
50-60oC after each layer. Hardness distribution along the buildup after deposition of six and eight 
layer is shown in Fig. 3. Microstructure banding is clearly visible on etched macrosamples. The 
irregular hardness distribution confirms nonuniform behavior of diffusion and microstructural 
changes. Mechanism of local properties formation can be revealed by the analysis of hardness 
evolution in points P0-P3, having practically equal distance between each other. Hardness of newly 
deposited metal in point P0 after deposition of six layers equal to 363 HV. After remelting of this 
area by the seventh layer, and reheating higher than 1000oC by eight layer hardness remains 
practically the same. Point P1 in contrast to P0 additionally reheated up to lower temperature by the 
eight layer. It leads to considerable decrease in hardness by 87 HV to 263 HV. Thermal cycle in 
point P2 is similar to P1 except additional low temperature reheating that has no effect on hardness. 
It is also proven by hardness at point P3. It can be concluded that local microhardness depends on 
thermal cycle during fabrication. One time high temperature reheating of deposited layer has no 
effect on hardness while additional reheating up to lower temperature leads to considerable decrease 
in hardness by 87-100 HV. Hardness bands of 0.7-0.8 mm thickness have a hardness variation in 
the range of 250-300 HV. The area close to the substrate has a higher hardness due ti higher cooling 
rates during deposition.  
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Fig. 3 Hardness distribution along the axis buildup after deposition of six and eight layers 

respectively 
Figure 4 shows several micrographs of the microstructure observed in different parts of the 

deposited wall (Fig. 3), which corresponds to different cooling rates. Depending on the cooling rate, 
the transformed microstructures are complex and may contain martensite (M), bainite (B) with 
different morphology, and in some cases polygonal ferrite (PF). [17, 18]. 

In the uppers layers of the deposited wall, upper bainite is formed, usually formed in the 
temperature range from 500-350°C. Particles of carbides are allocated in the form of a batch type 
with the structure of parallel spaced lathes or plates; the second structural component - along the 
boundaries of the ferrite plates of the martensite and residual austenite; rod-like carbides nucleation 
occurs at the boundaries of austenite grains; the boundaries of the former austenitic grains remain. 

In the lower part there is a microstructure of lower bainite that forms at lower temperature than 
upper bainite. Lath morphology; excretion of cementite inside bainitic lathes; the boundaries of the 
former austenitic grains remain. The lower bainite is usually formed at temperatures of 350 – 200°C 
and has a needle-like (lamellar) structure. Carbide particles in the lower bainite are located in the α-
phase plates. 
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a) b)  

c) d)  
Fig. 4 Microstructure a) zone P5; b) zone P4; c) zone P1; d) zone P0 

Table 2 presents results of impact bending test for samples obtained using different laser beam 
power. Figure 5 shows fractograms of samples after impact bending tests. The fracture (Fig.5a) has 
a natural ductile fracture and is about 95%, 5% brittle. Equiaxial pits are formed in the fracture. 
Unmelted particles are also presented. In the fracture (Fig.5b), identical pits are formed, collapsing 
viscous, finely dispersed oxides are presented, (Fig.5c) a larger amount and a larger size of oxide 
inclusions are found, compared with the other modes. 

Table 2 Fracture toughness 
No. 

mode P, (W) Powder 
sphericity  

Fluidity of 
powder 
(g s-1) 

K, (J) KC, (J cm-2) 

1 (a) 1400 

0.9528 3,726 

50.76 61.6 

2 (b) 2000 67.96 84.66 

3 (c) 2300 56.3 68 
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Fig. 5 Fractograms a) P=1400W; b) P=2000W; c) P=2300W 

The macrostructure of samples with impact toughness is shown in Figure 6. In sample (a) 
there are pores with a size of 130-230 μm, non-fusion of 160 μm, in (b) a pore size of up to 160 μm, 
in (c) a pore size of up to 666 μm. 

a) b) c)  
Fig. 6 3D macrostructure of buildup obtained using beam power 

1.4 kW (a), 2.0 kW (b), 2.3 kW (c) 

Summary 

Local microhardness of buildup depends on thermal cycle during fabrication. One time high 
temperature reheating of deposited layer has no effect on hardness while additional reheating up to 
lower temperature leads to considerable decrease in hardness by 87-100 HV. Far from substrate 
hardness and microstructure bands of 0.7-0.8 mm thickness have a hardness variation in the range 
of 250-300 HV. The area close to the substrate has a microstructure of lower bainite with a lower 
hardness due to heat input from the upper layers and lower cooling rates during deposition. 

Impact toughness has the best performance when the radiant power is P = 2000W for the given 
parameters of the deposited process. The impact hardness is predominantly viscous with a small 
fraction of brittle fracture. 
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