

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ **МОРСКОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ**

при финансовой поддержке Государства в лице

ПРИКЛАДНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ

по теме: «Разработка технологий прямого лазерного выращивания и ремонтной лазерной наплавки высокопрочных деталей судового машиностроения, эксплуатируемых в условиях Арктики»

Соглашение о предоставлении субсидии от «26» сентября 2017 г № 14.574.21.0175 Уникальный идентификатор работ (проекта) RFMEFI57417X0175

Индустриальный партнер

Руководитель работы: проф. Г.А. Туричин

СТРУКТУРА ФИНАНСИРОВАНИЯ

Объем средств субсидии

60 000 000 рублей,

в том числе:

2017 г. – 20 00 000 рублей

2018 г. – 20 000 000 рублей

2019 г. – 20 000 000 рублей

Объем внебюджетных средств

60 000 000 рублей,

в том числе:

2017 г. – 20 000 000 рублей

2018 г. – 20 000 000 рублей

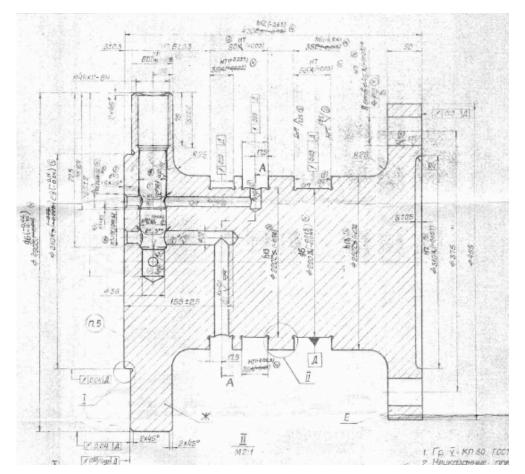
2019 г. – 20 000 000 рублей

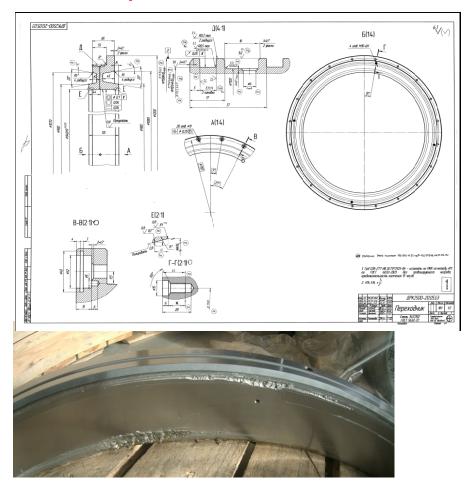
Разработка технологий прямого лазерного выращивания и ремонтной лазерной наплавки высокопрочных деталей судового машиностроения, эксплуатируемых в условиях Арктики

ЦЕЛЬ РАБОТЫ

- Разработка технологии прямого лазерного выращивания высокопрочных деталей судового машиностроения из порошковых металлических материалов и оборудования для её реализации, позволяющих многократно снизить себестоимость изготовления деталей сложной геометрии из высокопрочных материалов.
- Разработка технологии ремонта высокопрочных деталей судового машиностроения методом лазерной порошковой наплавки.
- Организация, техническое и технологическое обеспечение участка прямого лазерного выращивания и ремонтной лазерной наплавки на АО «ЦС «Звёздочка».

ОСНОВНЫЕ ЗАДАЧИ:

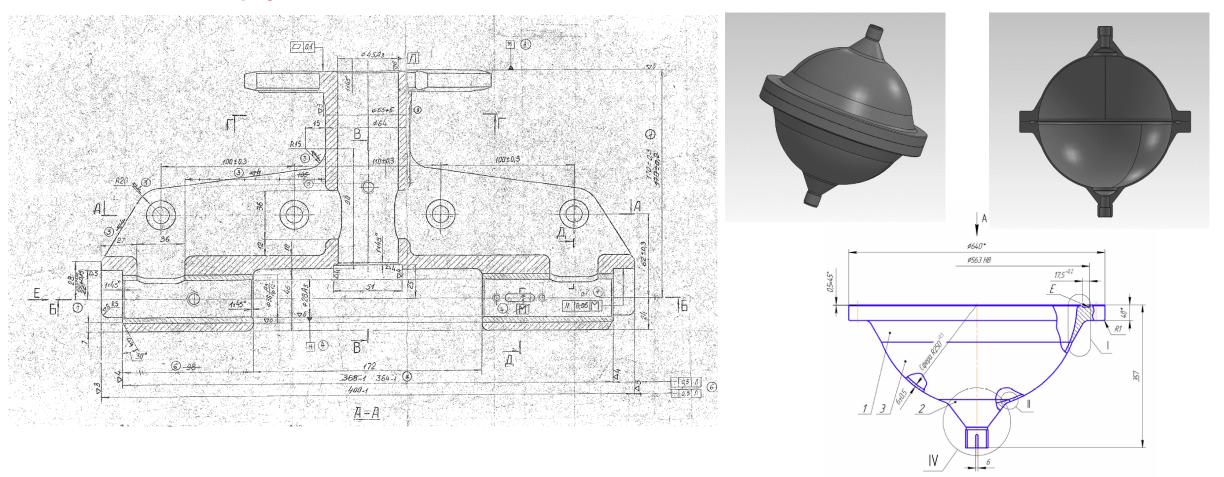

- Анализ существующих технических и технологических решений по выращиванию изделий из порошковых материалов, и оценка возможности их масштабирования и применения в судовом машиностроении.
- Определение номенклатуры деталей судового машиностроения, рекомендуемых для изготовления методом лазерного выращивания.
- Разработка базовых технологий лазерного выращивания и ремонта деталей судового машиностроения
- Создание опытного образца модульного автоматизированного технологического комплекса


НОМЕНКЛАТУРА ЦЕЛЕВЫХ ДЕТАЛЕЙ ПРОЕКТА

Ремонтная лазерная наплавка

Вал 11ШМС 9.01

Переходник ДРК2500-20.05.03



НОМЕНКЛАТУРА ЦЕЛЕВЫХ ДЕТАЛЕЙ ПРОЕКТА

Прямое лазерное выращивание

Корпус 949-7330-561

Полусфера 18510-5110-085

НОМЕНКЛАТУРА МАТЕРИАЛОВ

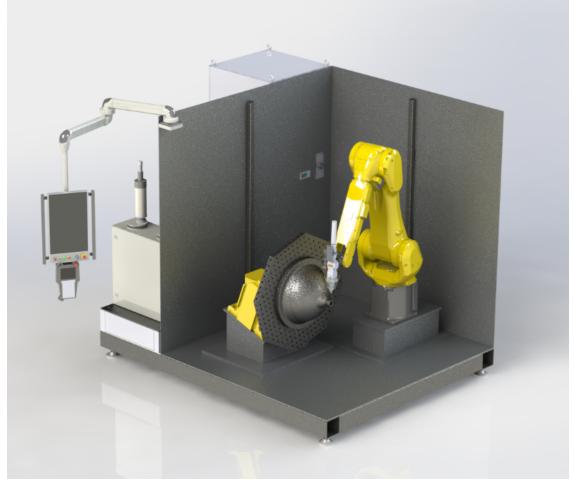
Стали

Марка материала	Предел текучести, МПа	Временное сопротивление разрыву, МПа	Относительное удлинение, %	Работа удара KV ⁻⁴⁰ , Дж	Твердость по Бринеллю НВ
		Не менее			
08ГДНФЛ ГОСТ 977-88	380	480	20	-	159-192
АБ2-1 (09ХН2МД) ТУ5.961-11571-2006	588-686	637	18	78	187-241
06X15H4ДМЛ ТУ5.961- 11835-2003	620	790	19	40,0 (KV ⁻¹⁰)	Не более 290

Титановый сплав

Марка материала	Предел текучести, МПа	Временное сопротивление разрыву, МПа			/дарная ость, кДж/м²
		Не менее		KCV	KCU
ТЛ5 ОСТ5Р.9071-88	590	640	8	294	490

Технические требования к опытному образцу автоматизированного технологического комплекса

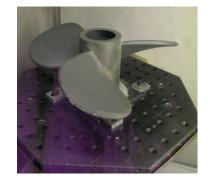

параметр, единица	а измерения	Значение		
Комплекс лазерного оборудования				
<u> Лазер волоконный иттербиевь</u>	ый	ЛС-3		
Тип используемого лазера		Волоконный		
Мощность лазерного излучени	ıя, максимальная, кBт	3		
Рабочий инструмент	Головка лазерная техі			
Головка лазерная		IPG FLW D30		
Максимальная рабочая мощно	сть лазерного	5		
излучения, не менее, кВт				
Фокусное расстояние коллима	100			
Фокусное расстояние фокусир	рующей линзы, мм	200		
Коаксиальная камера видеона	+			
Коаксиальное кольцевое сопл	+			
Система перемещения раб	бочего инструмента			
Робот–манипулятор		FANUC M- 20iB/25		
Радиус досягаемости, не мене	1800			
Повторяемость (по ISO 9283), н	± 0,05			
Система перемещения выр	ащиваемого изделия			
Позиционер двухосевой FANU	C			
Грузоподъемность, не менее, і	кг	200		

Система подготовки и под		
материал	a	
Питатель порошковый	GTVPF 2/2	
Количество колб, шт	2	
Диапазон регулировки массово кг/ч	от 0,3 до 3	
Система поддержания раб	бочей атмосферы	
Рабочий газ		Аргон ВЧ
Остаточное содержание кисл	орода, не более,ррт	500
Система подготовки и		•
Количество линий подачи газ		3
Диапазон регулировки расхода л/мин	от 1 до 25	
Диапазон регулировки расход заполнения камеры, л/мин	до 500	
Система видеонаблюдения зо	ны обработки	+
Системаавтоматического упр	равления (АСУ) КТЛВ	
Управление	Ручное	+
управление	Автоматическое	+
Кабина тохнолог	MUOCKAG	
Кабина технолог		1800
Габариты (внутренние),	Ширина	1800
Габариты (внутренние),	Ширина Длина	2000
Габариты (внутренние), не менее, мм	Ширина	
Кабина технолог Габариты (внутренние), не менее, мм Герметичный шлюз Перчаточный порт	Ширина Длина	2000 2200

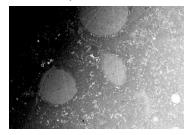
ЭСКИЗ ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА

ПРОВЕДЕНИЕ ИССЛЕДОВАТЕЛЬСКИХ ИСПЫТАНИЙ ТПЛВ

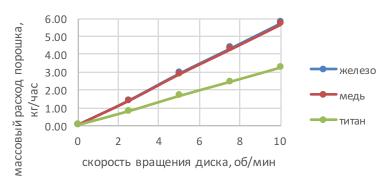
Управление формированием структурой


1.5 kBT

— Без термообработки, t=900 $^{\circ}$ С — Термообработка, t=900 $^{\circ}$ С

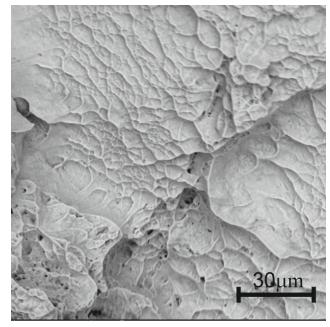


Вязкий излом



Гетерофазная структура на основе бронзы и никеля

Производительность порошкового питателя для различных сплавов



Результаты механических испытаний образцов, изготовленных с использованием прямого лазерного выращивания

Материал	Произво дитель	Предел прочности, МПа	Предел текучести, МПа	Относительное удлинение, %	
Порошковые материалы отечественного производства					
ЭИ698П	ВИАМ	1021,0	837,0	18	
BB751	вилс	1115,6	981,9	8,7	
ЖС6У	l/a	1353,0	1046,0	11,5	
BT-20	Композит	968,0	882,0	6,6	
BT-6	Галион	1115,5	881,4	9,1	
ПР-09Х14НЧБ	Полема	1451,4	1167,0	13,5	
ПР28Х3СНМВФА		1667,2	1068,9	11,3	
Порошковые материалы зарубежного производства					
Inconel 625	112	865,0	489,0	28,5	
316L	Höganas	570,0	272,5	41,0	

Образец для механических испытаний ГОСТ 11701-84

Излом ВТ-6, фракция порошка 100-200

механические свойства материалов на уровне деформированного состояния

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

СПАСИБО ЗА ВНИМАНИЕ!

